umes of BiBr₃ (l)⁷ and BiCl₃ (l)⁶ are, significantly smaller than the sum of the molar volumes of their respective elements from which they are formed. On this basis, BiI₃ (l) would show a tendency to disproportionate at high pressures whereas BiBr₃(l) and BiCl₃(l) become more stable. This difference in stability with pressure could account for the difference in behavior of the log κ vs 1/T and κ vs. P curves of BiI₃ from those of BiBr₃. and BiCl₃.

The activation energies (E_{\star}) for BiCl₃, BiBr₃, and BiI₃ at $P \leq 0.1$ kbar were estimated from the slope of

the log $\kappa vs. 1/T$ curves for these salts from data given by Grantham and Yosim^{2a} at temperatures immediately above the melting point. These estimated values of E_{κ} at $P \leq 0.1$ kbar are compared with E_{κ} at P = 5.4 kbars in Table III. The activation energies at these two pressures are essentially identical in the cases of BiCl₃ and BiBr₃; for BiI₃, E_{κ} at 5.4 kbars is almost four times its value at P = 0. This difference in E_{κ} between bismuth triiodide and the tribromide and trichloride may be due to a greater effect of pressure upon ionic association in the case of BiI₃.